矩阵特征多项式
回答
![](/static/img/wenda.png)
2022-06-16
- 相关推荐
(λ-1)[(λ+1)λ-1]
=(λ-1)(λ^2+λ-1)
=(λ-1)[(λ^2+λ+1)-2]
=(λ^3-1)-2(λ-1)
=λ^3-2λ+1
扩展资料
对于求解线性递推数列,我们还经常使用生成函数法,而对于常系数线性递推数列,其生成函数是一个有理分式,其分母即特征多项式。
为n*n的矩阵A的特征多项式为|A-λE|,其中E为n*n的单位矩阵。
特征多项式解法:
1、把|λE-A|的各行(或各列)加起来,若相等,则把相等的部分提出来(一次因式)后,剩下的部分是二次多项式,肯定可以分解因式。
2、把|λE-A|的某一行(或某一列)中不含λ的两个元素之一化为零,往往会出现公因子,提出来,剩下的又是一二次多项式。
3、试根法分解因式。
对布于任何交换环上的方阵都能定义特征多项式。要理解特征多项式,首先需要了解一下特征值与特征向量,这些都是联系在一起的:
设A是n阶矩阵,如果数λ和n维非零列向量x使得关系式Ax=λx成立,那么,这样的数λ就称为方阵A的特征值,非零向量x称为A对应于特征值λ的特征向量。