高数级数
回答
爱扬教育
2022-03-16
- 相关推荐
级数理论是分析学的一个分支;它与另一个分支微积分学一起作为基础知识和工具出现在其余各分支中。二者共同以极限为基本工具,分别从离散与连续两个方面,结合起来研究分析学的对象,即变量之间的依赖关系──函数。
扩展资料
级数是研究函数的一个重要工具,在理论上和实际应用中都处于重要地位,这是因为:一方面能借助级数表示许多常用的非初等函数,微分方程的解就常用级数表示;另一方面又可将函数表为级数,从而借助级数去研究函数,例如用幂级数研究非初等函数,以及进行近似计算等。
正项级数代表着收敛性最简单的情形。在这种情形,级数级数的部分和 sm=u1+u2+…+um随着m单调增长,等价于级数的一般项un≥0(因此,有时也称为非负项级数)。于是级数(∑un)收敛等价于部分和(sm)有界。项越小,部分和就越倾向于有界。
同样,每项比前项的比值较小,部分和也就增加较少而较倾向于有界,因此正项级数又有比值判别法。事实上,这都在于断定un的大小数量级。