秩怎么算

回答
爱扬教育

2022-04-03

  • 相关推荐
在线性代数中,一个矩阵A的列秩是A的线性独立的纵列的极大数,通常表示为r(A),rk(A)或rank A。
一个矩阵A的列秩是A的线性独立的纵列的极大数目。行秩是A的线性无关的横行的极大数目。即如果把矩阵看成一个个行向量或者列向量,秩就是这些行向量或者列向量的秩,也就是极大无关组中所含向量的个数。

扩展资料

  计算矩阵的秩的一个有用应用是计算线性方程组解的数目。如果系数矩阵的秩等于增广矩阵的秩,则方程组有解。在这种情况下,如果它的秩等于方程(未知数)的数目,则方程有唯一解;如果秩小于未知数个数,则有无穷多个解。

  向量组的秩

  向量组的秩:在一个m维线性空间E中,一个向量组的秩表示的是其生成的子空间的维度。考虑m× n矩阵,将A的秩定义为向量组F的秩,则可以看到如此定义的A的秩就是矩阵 A的线性无关纵列的极大数目,即 A的列空间的维度(列空间是由 A的纵列生成的 F的子空间)。因为列秩和行秩是相等的,我们也可以定义 A的秩为 A的行空间的维度。