正交矩阵定义和性质
回答
爱扬教育
2022-06-17
- 相关推荐
正交矩阵的每一个行(列)向量都是模为1的,并且任意两个行(列)向量是正交的,即所有的行(列)向量组成R^n的一组标准正交基。正交矩阵每个元素绝对值都小于等于1,如果有一个元素为1,那么这个元素所在的行列的其余元素一定都为零。
扩展资料
注意事项:
由于向量组内向量均不为0,只需要在等式两边随便乘上一个向量即可,假设乘的是a1。由于与其他向量两两正交,所以其他项全为0。
由于a1不为0,那么必然不为0,要使得等式成立,只能是λ1为0。也就是说向量a,在规范正交基下某一个维度的坐标, 等于和整个维度的正交基向量的内积。