矩阵的行列式是针对什么矩阵的

回答
爱扬教育

2022-06-17

  • 相关推荐
矩阵行列式是指矩阵的全部元素构成的行列式,设A=(aij)是数域P上的一个n阶矩阵,则所有A=(aij)中的元素组成的行列式称为矩阵A的行列式,记为|A|或det(A)。

扩展资料

  若A,B是数域P上的两个n阶矩阵,k是P中的任一个数,则|AB|=|A||B|,|kA|=k|A|,|A*|=|A|n-1,其中A*是A的伴随矩阵;若A是可逆矩阵,则|A-1|=|A|-1

  1、行列式的本质是线性变换的放大率,而矩阵的本质就是个数表。

  2、行列式行数=列数,矩阵不一定(行数列数都等于n的叫n阶方阵),二者的表示方式亦有区别。