子群的定义

回答
爱扬教育

2022-06-21

  • 相关推荐
子群是群的特殊的非空子集。群G的非空子集H,若对G的乘法也成为群,则称H为G的子群,记为H≤G。若子群H≠G,则称H为G的真子群,记为HG或简记为Hi|i∈I}是G的子群的集合,I是一个指标集,则所有Hi的交Hi是G的一个子群。

扩展资料

  一种只有一个运算的、比较简单的代数结构;是可用来建立许多其他代数系统的一种基本结构。

  设G为一个非空集合,a、b、c为它的任意元素。如果对G所定义的一种代数运算“·”(称为“乘法”,运算结果称为“乘积”)满足:

  (1)封闭性,a·b∈G;

  (2)结合律,即(a·b)c = a·(b·c);

  (3)对G中任意元素a、b,在G中存在惟一的元素x,y,使得a·x= b,y·a=b,则称G对于所定义的运算“·”构成一个群。例如,所有不等于零的实数,关于通常的乘法构成一个群;时针转动(关于模12加法),构成一个群。

  满足交换律的群,称为交换群。

  群是数学最重要的概念之一,已渗透到现代数学的所有分支及其他学科中。凡是涉及对称,就存在群。例如,可以用研究图形在变换群下保持不变的性质,来定义各种几何学,即利用变换群对几何学进行分类。可以说,不了解群,就不可能理解现代数学。