二阶可导和二阶连续可导区别

回答
爱扬教育

2022-03-22

  • 相关推荐
二阶可导和二阶连续可导的区别在于其二阶导数是否连续。函数二阶可导是指函数具有二阶导数,但是二阶导数的连续性无法确定;函数二阶连续可导是指函数具有二阶导数,并且它的二阶导数是连续的。

扩展资料

  导数,也叫导函数值。又名微商,是微积分中的重要基础概念。当函数y=f(x)的自变量x在一点x0上产生一个增量Δx时,函数输出值的增量Δy与自变量增量Δx的比值在Δx趋于0时的极限a如果存在,a即为在x0处的导数,记作f'(x0)或df(x0)/dx。