navier stokes方程

回答
爱扬教育

2022-04-01

  • 相关推荐
纳维-斯托克斯方程(英文名:Navier-Stokes equations),描述粘性不可压缩流体动量守恒的运动方程。简称N-S方程。粘性流体的运动方程首先由纳维在1827年提出,只考虑了不可压缩流体的流动。泊松在1831年提出可压缩流体的运动方程。

扩展资料

  圣维南与斯托克斯在1845年独立提出粘性系数为一常数的形式,都称为Navier-Stokes方程,简称N-S方程。三维空间中的N-S方程组光滑解的存在性问题被美国克雷数学研究所设定为七个千禧年大奖难题之一。

  后人在此基础上又导出适用于可压缩流体的N-S方程。以应力表示的运动方程,需补充方程才能求解。N-S方程反映了粘性流体(又称真实流体)流动的基本力学规律,在流体力学中有十分重要的意义。它是一个非线性偏微分方程,求解非常困难和复杂,在求解思路或技术没有进一步发展和突破前只有在某些十分简单的特例流动问题上才能求得其精确解;但在部分情况下,可以简化方程而得到近似解。