秩的性质

回答
爱扬教育

2022-06-07

  • 相关推荐
我们假定 A是在域 F上的 m× n矩阵并描述了上述线性映射。
只有零矩阵有秩 0 A的秩最大为 min(m,n) f是单射,当且仅当 A有秩 n(在这种情况下,我们称 A有“满列秩”)。f是满射,当且仅当 A有秩 m(在这种情况下,我们称 A有“满行秩”)。在方块矩阵A(就是 m= n) 的情况下,则 A是可逆的,当且仅当 A有秩 n(也就是 A有满秩)。如果 B是任何 n× k矩阵,则 AB的秩最大为 A的秩和 B的秩的小者。即:秩(AB)≤min(秩(A),秩(B)) 推广到若干个矩阵的情况,就是:秩(A1A2...Am)≤min(秩(A1),秩(A2),...秩(Am)) 证明:考虑矩阵的秩的线性映射的定义,令A、B对应的线性映射分别为 f和 g,则秩(AB)表示复合映射 f·g,它的象 Im f·g是 g的像 Im g在映射 f作用下的象。然而 Im g是整个空间的一部分,因此它在映射 f作用下的象也是整个空间在映射 f作用下的象的一部分。也就是说映射 Im f·g是Im f的一部分。对矩阵就是:秩(AB)≤秩(A)。对于另一个不等式:秩(AB)≤秩(B),考虑 Im g的一组基:(e1,e2,...,en),容易证明(f(e1),f(e2),...,f(en))生成了空间 Im f·g,于是 Im f·g的维度小于等于Im g的维度。对矩阵就是:秩(AB)≤秩(B)。因此有:秩(AB)≤min(秩(A),秩(B))。若干个矩阵的情况证明类似。作为 < 情况的一个例子,考虑积 两个因子都有秩 1,而这个积有秩 0。可以看出,等号成立当且仅当其中一个矩阵(比如说 A)对应的线性映射不减少空间的维度,即是单射,这时 A是满秩的。于是有以下性质:如果 B是秩 n的 n× k矩阵,则 AB有同 A一样的秩。如果 C是秩 m的 l× m矩阵,则 CA有同 A一样的秩。A的秩等于 r,当且仅当存在一个可逆 m× m矩阵 X和一个可逆的 n× n矩阵 Y使得 这里的 Ir指示 r× r单位矩阵。证明可以通过高斯消去法构造性地给出。
矩阵的秩加上矩阵的零化度等于矩阵的纵列数(这就是秩-零化度定理)。

扩展资料

解线性方程组
记线性方程组的系数矩阵为,增广矩阵为,则
(i),方程组有惟一解;
(ii),方程组有无穷解;
(iii),方程组无解。
其它
在解析几何中,矩阵的秩可用来判断空间中两直线、两平面及直线和平面之间的关系;
在控制论中,矩阵的秩可以用来确定线性系统是否为可控制的(或可观察的)。