积分的导数
回答
爱扬教育
2022-06-12
- 相关推荐
扩展资料
记作/ab f(x) dx 即 /ab f(x) dx =limn>00 [f(r1)+...+f(rn)], 这里,a 与 b叫做积分下限与积分上限,区间[a,b] 叫做积分区间,函数f(x) 叫做被积函数,x 叫做积分变量,f(x)dx 叫做被积式。
积分区间都是常数的话,那就是f(x),如果积分区间是其他函数表示那就是还要乘区间函数导数f(x)[b'-a']
定积分是积分的一种,是函数f(x)在区间[a,b]上的积分和的极限。变上限积分求导,直接把上限往下放,把被积函数里的x换成t就是导数!
定积分就是求函数f(X)在区间[a,b]中的图像包围的面积。即由 y=0,x=a,x=b,y=f(X)所围成图形的面积。这个图形称为曲边梯形,特例是曲边三角形。