高数夹逼准则

回答
爱扬教育

2022-06-07

  • 相关推荐
一.如果数列{Xn},{Yn}及{Zn}满足下列条件:
(1)当n>No时,其中No∈N*,有Yn≤Xn≤Zn,
(2)当n→+∞,limYn =a;当n→+∞ ,limZn =a,
那么,数列{Xn}的极限存在,且当 n→+∞,limXn =a。
证明 因为limYn=a limZn=a 所以根据数列极限的定义,对于任意给定的正数ε,存在正整数N1,N2,当n>N1时 ,有〡Yn-a∣﹤ε,当n>N2时,有∣Zn-a∣﹤ε,现在取N=max{No,N1,N2},则当n>N时,∣Yn-a∣<ε,∣Zn-a∣<ε同时成立,且Yn≤Xn≤Zn,即a-ε limXn=a[1]
二.
函数的夹逼定理
F(x)与G(x)在Xo连续且存在相同的极限A,即x→Xo时, limF(x)=limG(x)=A
则若有函数f(x)在Xo的某邻域内恒有
F(x)≤f(x)≤G(x)
则当X趋近Xo,有limF(x)≤limf(x)≤limG(x)
即 A≤limf(x)≤A
故 limf(Xo)=A
简单的说:函数A>B,函数B>C,函数A的极限是X,函数C的极限也是X ,那么函数B的极限就一定是X,这个就是夹逼定理。

扩展资料

1.设{Xn},{Zn}为收敛数列,且:当n趋于无穷大时,数列{Xn},{Zn}的极限均为:a.
若存在N,使得当n>N时,都有Xn≤Yn≤Zn,则数列{Yn}收敛,且极限为a.
2.夹逼准则适用于求解无法直接用极限运算法则求极限的函数极限,间接通过求得F(x)和G(x)的极限来确定
f(x)的极限