高等代数和高等数学的区别
回答
爱扬教育
2022-06-07
- 相关推荐
2、高等数学就是微积分+微分方程+空间解析几何。高等代数是线性代数+线性空间+多项式,主要内容是矩阵运算和线性空间的变换。
扩展资料
1、高等代数:代数在讨论任意多个未知数的一次方程组,也叫线性方程组的同时还研究次数更高的一元方程组。高等代数是代数学发展到高级阶段的总称,包括两部分:线性代数、多项式代数。在初等代数的基础上研究对象进一步的扩充,引进了许多新的概念以及与通常很不相同的量,比如最基本的有集合、向量和向量空间等。
2、高等数学:是由微积分学,较深入的代数学、几何学以及它们之间的交叉内容所形成的一门高等代数:高等代数是代数学发展到高级阶段的总称,包括两部分:线性代数、多项式代数。在初等代数的基础上研究对象进一步的扩充,引进了许多新的概念以及与通常很不相同的量,比如最基本的有集合、向量和向量空间等。高度的抽象性、严密的逻辑性和广泛的应用性。抽象性和计算性是数学最基本、最显著的特点,有了高度抽象和统一,我们才能深入地揭示其本质规律,才能使之得到更广泛的应用。
2、高等数学:是由微积分学,较深入的代数学、几何学以及它们之间的交叉内容所形成的一门高等代数:高等代数是代数学发展到高级阶段的总称,包括两部分:线性代数、多项式代数。在初等代数的基础上研究对象进一步的扩充,引进了许多新的概念以及与通常很不相同的量,比如最基本的有集合、向量和向量空间等。高度的抽象性、严密的逻辑性和广泛的应用性。抽象性和计算性是数学最基本、最显著的特点,有了高度抽象和统一,我们才能深入地揭示其本质规律,才能使之得到更广泛的应用。